一行 Python 实现并行化 — 日常多线程操作的新思路
Python 在程序并行化方面多少有些声名狼藉。撇开技术上的问题,例如线程的实现和 GIL,我觉得错误的教学指导才是主要问题。常见的经典 Python 多线程、多进程教程多显得偏“重”。而且往往隔靴搔痒,没有深入探讨日常工作中最有用的内容。
传统的例子
简单搜索下“Python 多线程教程”,不难发现几乎所有的教程都给出涉及类和队列的例子:
1#Example.py
2'''
3Standard Producer/Consumer Threading Pattern
4'''
5import time
6import threading
7import Queue
8class Consumer(threading.Thread):
9 def __init__(self, queue):
10 threading.Thread.__init__(self)
11 self._queue = queue
12 def run(self):
13 while True:
14 # queue.get() blocks the current thread until
15 # an item is retrieved.
16 msg = self._queue.get()
17 # Checks if the current message is
18 # the "Poison Pill"
19 if isinstance(msg, str) and msg == 'quit':
20 # if so, exists the loop
21 break
22 # "Processes" (or in our case, prints) the queue item
23 print "I'm a thread, and I received %s!!" % msg
24 # Always be friendly!
25 print 'Bye byes!'
26def Producer():
27 # Queue is used to share items between
28 # the threads.
29 queue = Queue.Queue()
30 # Create an instance of the worker
31 worker = Consumer(queue)
32 # start calls the internal run() method to
33 # kick off the thread
34 worker.start()
35 # variable to keep track of when we started
36 start_time = time.time()
37 # While under 5 seconds..
38 while time.time() - start_time < 5:
39 # "Produce" a piece of work and stick it in
40 # the queue for the Consumer to process
41 queue.put('something at %s' % time.time())
42 # Sleep a bit just to avoid an absurd number of messages
43 time.sleep(1)
44 # This the "poison pill" method of killing a thread.
45 queue.put('quit')
46 # wait for the thread to close down
47 worker.join()
48if __name__ == '__main__':
49 Producer()
哈,看起来有些像 Java 不是吗?
我并不是说使用生产者/消费者模型处理多线程/多进程任务是错误的(事实上,这一模型自有其用武之地)。只是,处理日常脚本任务时我们可以使用更有效率的模型。
问题在于…
首先,你需要一个样板类;
其次,你需要一个队列来传递对象;
而且,你还需要在通道两端都构建相应的方法来协助其工作(如果需想要进行双向通信或是保存结果还需要再引入一个队列)。
worker 越多,问题越多
按照这一思路,你现在需要一个 worker 线程的线程池。下面是一篇 IBM 经典教程中的例子——在进行网页检索时通过多线程进行加速。
1#Example2.py
2'''
3A more realistic thread pool example
4'''
5import time
6import threading
7import Queue
8import urllib2
9class Consumer(threading.Thread):
10 def __init__(self, queue):
11 threading.Thread.__init__(self)
12 self._queue = queue
13 def run(self):
14 while True:
15 content = self._queue.get()
16 if isinstance(content, str) and content == 'quit':
17 break
18 response = urllib2.urlopen(content)
19 print 'Bye byes!'
20def Producer():
21 urls = [
22 'http://www.python.org', 'http://www.yahoo.com'
23 'http://www.scala.org', 'http://www.google.com'
24 # etc..
25 ]
26 queue = Queue.Queue()
27 worker_threads = build_worker_pool(queue, 4)
28 start_time = time.time()
29 # Add the urls to process
30 for url in urls:
31 queue.put(url)
32 # Add the poison pillv
33 for worker in worker_threads:
34 queue.put('quit')
35 for worker in worker_threads:
36 worker.join()
37 print 'Done! Time taken: {}'.format(time.time() - start_time)
38def build_worker_pool(queue, size):
39 workers = []
40 for _ in range(size):
41 worker = Consumer(queue)
42 worker.start()
43 workers.append(worker)
44 return workers
45if __name__ == '__main__':
46 Producer()
这段代码能正确的运行,但仔细看看我们需要做些什么:构造不同的方法、追踪一系列的线程,还有为了解决恼人的死锁问题,我们需要进行一系列的 join 操作。这还只是开始……
至此我们回顾了经典的多线程教程,多少有些空洞不是吗?样板化而且易出错,这样事倍功半的风格显然不那么适合日常使用,好在我们还有更好的方法。
何不试试 map
map 这一小巧精致的函数是简捷实现 Python 程序并行化的关键。map 源于 Lisp 这类函数式编程语言。它可以通过一个序列实现两个函数之间的映射。
1urls = ['http://www.yahoo.com', 'http://www.reddit.com']
2 results = map(urllib2.urlopen, urls)
上面的这两行代码将 urls 这一序列中的每个元素作为参数传递到 urlopen 方法中,并将所有结果保存到 results 这一列表中。其结果大致相当于:
1results = []
2for url in urls:
3 results.append(urllib2.urlopen(url))
map 函数一手包办了序列操作、参数传递和结果保存等一系列的操作。
为什么这很重要呢?这是因为借助正确的库,map 可以轻松实现并行化操作。
在 Python 中有个两个库包含了 map 函数: multiprocessing 和它鲜为人知的子库 multiprocessing.dummy.
这里多扯两句: multiprocessing.dummy? mltiprocessing 库的线程版克隆?这是虾米?即便在 multiprocessing 库的官方文档里关于这一子库也只有一句相关描述。而这句描述译成人话基本就是说:”嘛,有这么个东西,你知道就成.”相信我,这个库被严重低估了!
dummy 是 multiprocessing 模块的完整克隆,唯一的不同在于 multiprocessing 作用于进程,而 dummy 模块作用于线程(因此也包括了 Python 所有常见的多线程限制)。
所以替换使用这两个库异常容易。你可以针对 IO 密集型任务和 CPU 密集型任务来选择不同的库。
动手尝试
使用下面的两行代码来引用包含并行化 map 函数的库:
1from multiprocessing import Pool
2from multiprocessing.dummy import Pool as ThreadPool
实例化 Pool 对象:
1pool = ThreadPool()
这条简单的语句替代了 example2.py 中 build_worker_pool 函数 7 行代码的工作。它生成了一系列的 worker 线程并完成初始化工作、将它们储存在变量中以方便访问。
Pool 对象有一些参数,这里我所需要关注的只是它的第一个参数:processes. 这一参数用于设定线程池中的线程数。其默认值为当前机器 CPU 的核数。
一般来说,执行 CPU 密集型任务时,调用越多的核速度就越快。但是当处理网络密集型任务时,事情有有些难以预计了,通过实验来确定线程池的大小才是明智的。
1pool = ThreadPool(4) # Sets the pool size to 4
线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。
创建好 Pool 对象后,并行化的程序便呼之欲出了。我们来看看改写后的 example2.py
1import urllib2
2from multiprocessing.dummy import Pool as ThreadPool
3urls = [
4 'http://www.python.org',
5 'http://www.python.org/about/',
6 'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
7 'http://www.python.org/doc/',
8 'http://www.python.org/download/',
9 'http://www.python.org/getit/',
10 'http://www.python.org/community/',
11 'https://wiki.python.org/moin/',
12 'http://planet.python.org/',
13 'https://wiki.python.org/moin/LocalUserGroups',
14 'http://www.python.org/psf/',
15 'http://docs.python.org/devguide/',
16 'http://www.python.org/community/awards/'
17 # etc..
18 ]
19# Make the Pool of workers
20pool = ThreadPool(4)
21# Open the urls in their own threads
22# and return the results
23results = pool.map(urllib2.urlopen, urls)
24#close the pool and wait for the work to finish
25pool.close()
26pool.join()
实际起作用的代码只有 4 行,其中只有一行是关键的。map 函数轻而易举的取代了前文中超过 40 行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。
1results = []
2for url in urls:
3 result = urllib2.urlopen(url)
4 results.append(result)
5# ------- VERSUS ------- #
6# ------- 4 Pool ------- #
7pool = ThreadPool(4)
8results = pool.map(urllib2.urlopen, urls)
9# ------- 8 Pool ------- #
10pool = ThreadPool(8)
11results = pool.map(urllib2.urlopen, urls)
12# ------- 13 Pool ------- #
13pool = ThreadPool(13)
14results = pool.map(urllib2.urlopen, urls)
结果:
1# Single thread: 14.4 Seconds
2# 4 Pool: 3.1 Seconds
3# 8 Pool: 1.4 Seconds
4# 13 Pool: 1.3 Seconds
很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于 9 带来的收益就十分有限了。
另一个真实的例子
生成上千张图片的缩略图,这是一个 CPU 密集型的任务,并且十分适合进行并行化。
基础单进程版本
1import os
2import PIL
3from multiprocessing import Pool
4from PIL import Image
5SIZE = (75,75)
6SAVE_DIRECTORY = 'thumbs'
7def get_image_paths(folder):
8 return (os.path.join(folder, f)
9 for f in os.listdir(folder)
10 if 'jpeg' in f)
11def create_thumbnail(filename):
12 im = Image.open(filename)
13 im.thumbnail(SIZE, Image.ANTIALIAS)
14 base, fname = os.path.split(filename)
15 save_path = os.path.join(base, SAVE_DIRECTORY, fname)
16 im.save(save_path)
17if __name__ == '__main__':
18 folder = os.path.abspath(
19 '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
20 os.mkdir(os.path.join(folder, SAVE_DIRECTORY))
21 images = get_image_paths(folder)
22 for image in images:
23 create_thumbnail(Image)
上边这段代码的主要工作就是将遍历传入的文件夹中的图片文件,一一生成缩略图,并将这些缩略图保存到特定文件夹中。这我的机器上,用这一程序处理 6000 张图片需要花费 27.9 秒。如果我们使用 map 函数来代替 for 循环:
1import os
2import PIL
3from multiprocessing import Pool
4from PIL import Image
5SIZE = (75,75)
6SAVE_DIRECTORY = 'thumbs'
7def get_image_paths(folder):
8 return (os.path.join(folder, f)
9 for f in os.listdir(folder)
10 if 'jpeg' in f)
11def create_thumbnail(filename):
12 im = Image.open(filename)
13 im.thumbnail(SIZE, Image.ANTIALIAS)
14 base, fname = os.path.split(filename)
15 save_path = os.path.join(base, SAVE_DIRECTORY, fname)
16 im.save(save_path)
17if __name__ == '__main__':
18 folder = os.path.abspath(
19 '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
20 os.mkdir(os.path.join(folder, SAVE_DIRECTORY))
21 images = get_image_paths(folder)
22 pool = Pool()
23 pool.map(creat_thumbnail, images)
24 pool.close()
25 pool.join()
5.6 秒!
虽然只改动了几行代码,我们却明显提高了程序的执行速度。在生产环境中,我们可以为 CPU 密集型任务和 IO 密集型任务分别选择多进程和多线程库来进一步提高执行速度——这也是解决死锁问题的良方。此外,由于 map 函数并不支持手动线程管理,反而使得相关的 debug 工作也变得异常简单。
到这里,我们就实现了(基本)通过一行 Python 实现并行化。
原文出处:https://medium.com/building-things-on-the-internet/40e9b2b36148#66bf-f06f781cb52b
1、下面的网址中可以找到关于 GIL(Global Interpretor Lock,全局解释器锁)更多的讨论: http://stackoverflow.com/questions/3044580/multiprocessing-vs-threading-python ↩
2、简言之,IO 密集型任务选择multiprocessing.dummy,CPU 密集型任务选择multiprocessing ↩
捐赠本站(Donate)
如您感觉文章有用,可扫码捐赠本站!(If the article useful, you can scan the QR code to donate))
- Author: shisekong
- Link: https://blog.361way.com/python-muitthread-on-oneline/3901.html
- License: This work is under a 知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议. Kindly fulfill the requirements of the aforementioned License when adapting or creating a derivative of this work.